metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Diaqua[2,6-bis(2,6-diethyl-4-sulfonatophenyl)-3,5-dimethyl-2,6-diazoniaheptan-4-ido]sodium(I)

Xuming Guo,^a Qibao Wang,^a Klaus Harms^b and Hongjian Sun^a*

^aSchool of Chemistry and Chemical Engineering, Shandong University, Shanda Nanlu 27, Jinan 250100, People's Republic of China, and ^bDepartment of Chemistry, University of Marburg, Hans-Meerwein-Strasse, Marburg 35032, Germany Correspondence e-mail: hjsun@sdu.edu.cn

Received 16 June 2007; accepted 3 August 2007

Key indicators: single-crystal X-ray study; T = 193 K; mean σ (C–C) = 0.005 Å; Hatom completeness 90%; disorder in main residue; R factor = 0.064; wR factor = 0.186; data-to-parameter ratio = 12.3.

The title compound, $[Na(C_{25}H_{33}N_2O_6S_2)(H_2O)_2]$, was obtained as a product of the reaction of sodium 4-amino-3,5diethylbenzenesulfonate with acetylacetone in the presence of hydrochloric acid in methanol. The molecule lies on a crystallographic twofold rotation axis and is a 'triple' internal salt which has three positive charge centers and three negative charge centers. The Na atom has a tetrahedral coordination geometry. The O atoms of the sulfonate groups are disordered over two positions with site occupancy factors of 0.87 and 0.13; the methyl groups of the ethyl substituents are disordered equally over two positions.

Related literature

Related crystal structures of β -diimine Schiff base compounds have been reported (Brownstein *et al.*, 1983; Lesikar & Richards, 2006).

Experimental

Crystal data

 $\begin{bmatrix} Na(C_{25}H_{33}N_2O_6S_2)(H_2O)_2 \end{bmatrix} \\ M_r = 580.64 \\ Tetragonal, I4_1/a \\ a = 12.1767 (3) \text{ Å} \\ c = 41.055 (3) \text{ Å} \\ V = 6087.2 (4) \text{ Å}^3 \\ \end{bmatrix}$

Data collection

Bruker SMART CCD
diffractometer20660 measured reflections
2699 independent reflectionsAbsorption correction: multi-scan
(SADABS; Sheldrick, 1996)
 $T_{min} = 0.950, T_{max} = 0.975$ 20660 measured reflections
2699 independent reflections
1517 reflections with $I > 2\sigma(I)$
 $R_{int} = 0.108$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.064$	H atoms treated by a mixture of
$wR(F^2) = 0.186$	independent and constrained
S = 1.01	refinement
2699 reflections	$\Delta \rho_{\rm max} = 0.38 \text{ e} \text{ Å}^{-3}$
220 parameters	$\Delta \rho_{\rm min} = -0.31 \text{ e} \text{ Å}^{-3}$
81 restraints	

Z = 8

Mo $K\alpha$ radiation

 $0.22 \times 0.18 \times 0.11 \text{ mm}$

 $\mu = 0.24 \text{ mm}^-$

T = 193 (2) K

Table 1 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$N1 - H1 \cdots O2^{i}$ N1 - H1 \cdots O2A^{i}	0.85(4) 0.85(4)	2.01 (4) 2.08 (5)	2.854 (6) 2.83 (3)	175 (4) 148 (4)
Symmetry code: (i) _	$v \perp \frac{1}{2} r - \frac{3}{2} - 7$	L 5		

Symmetry code: (i) $-y + \frac{1}{4}, x - \frac{3}{4}, -z + \frac{5}{4}$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Sheldrick, 2001); software used to prepare material for publication: *SHELXTL*.

This work was supported by the NSFC (Nos. 20572062 and 20372042), by the Doctoral Program of the MOE (Nos. 20050422010 and 20050422011), and by the Deutsche Forschungsgemeinschaft (No. SFB 260).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2437).

References

Brownstein, S., Gabe, E. & Prased, L. (1983). Can. J. Chem. 61, 1410-1413.

- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Lesikar, L. A. & Richards, A. F. (2006). J. Organomet. Chem. 691, 4250–4256.
 Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Acta Cryst. (2007). E63, m2316 [doi:10.1107/S1600536807038305]

Diaqua[2,6-bis(2,6-diethyl-4-sulfonatophenyl)-3,5-dimethyl-2,6-diazoniaheptan-4-ido]sodium(I)

X. Guo, Q. Wang, K. Harms and H. Sun

Comment

In the title compound both N atoms are protonated, rather than the sulfonate groups. In the title molecule (Fig. 1) the sodium atom is coordinated in a distorted tetrahedral geometry by two O atoms of two sulfonate groups and two water molecules. There is an intermolecular hydrogen bond between the N—H group and an O atom of a sulfonate group. The O atoms of the $-SO_3$ groups are disordered over two sites as are the terminal $-CH_3$ groups of the ethyl substituents.

Similar crystal structures have been reported in the literature *e.g.* 2-*N*-phenylamino-4-*N*-phenylimino-2-pentene hydrochloride and 4-(2,4,6-trimethylphenylimino)-2-(2,4,6-trimethylphenylamino) pent-2-ene)iodide tetrachloro-arsenate (Brownstein *et al.*, 1983; Lesikar & Richards, 2006). The bond lengths and angles of these compounds are similar to those in the title compound. There is also intermolecular hydrogen bonding in 2-*N*-phenylamino-4-*N*-phenylimino-2-pentene hydrochloride.

Experimental

1.7 ml concentrated hydrochloric acid was added to a anhydrous methanol solution of 5.02 g (20 mmol) 3, 5-diethyl-4amido-benzenesulfonate sodium and 1.05 g (10.5 mmol) acetyl acetone and refluxed for 6 days. A white precipitate was observed and filtered off and then washed with anhydrous methanol and a white product was obtained. This product was dissolved in methanol, and recrystallized at 258 K for 5 days, the title compound was obtained as colorless crystals (Yield 53%).

Refinement

The H atoms on the hydrate ligands were not visible in the difference Fourier maps and have not been included in the refinement although they are included in the molecular formula. All the other H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.99 Å and with $U_{iso}(H) = 1.2$ (1.5 for methyl groups) times $U_{eq}(C)$. The O atoms of the unique –SO₃ group are disordered over two sites with refined occupancies 0.869 (11) and 0.131 (11). In addition the methyl groups of the ethyl substituents are also disordered with equall occupancies for both components.

Figures

Fig. 1. The molecular structure with atom labels and 30% probability displacement ellipsoids for non-H atoms. Only selected H atoms are shown. The disorder is not shown.

Diaqua[2,6-bis(2,6-diethyl-4-sulfonatophenyl)-3,5-dimethyl-2,6-\ diazoniaheptan-4-ido]sodium(I)

Crystal data	
[Na(C ₂₅ H ₃₃ N ₂ O ₆ S ₂)(H ₂ O) ₂]	Z = 8
$M_r = 580.64$	$F_{000} = 2432$
Tetragonal, $I4_1/a$	$D_{\rm x} = 1.258 {\rm ~Mg~m}^{-3}$
Hall symbol: -I 4ad	Mo K α radiation $\lambda = 0.71073$ Å
a = 12.1767 (3) Å	Cell parameters from 3063 reflections
b = 12.1767 (3) Å	$\theta = 3.1 - 20.4^{\circ}$
c = 41.055 (3) Å	$\mu = 0.24 \text{ mm}^{-1}$
$\alpha = 90^{\circ}$	T = 193 (2) K
$\beta = 90^{\circ}$	Block, colourless
$\gamma = 90^{\circ}$	$0.22\times0.18\times0.11~mm$
$V = 6087.2 (4) \text{ Å}^3$	
Data collection	
Bruker SMART CCD	

diffractometer	2699 independent reflections
Radiation source: fine-focus sealed tube	1517 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.108$
T = 193(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ω scans	$\theta_{\min} = 2.2^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -14 \rightarrow 14$
$T_{\min} = 0.950, \ T_{\max} = 0.975$	$k = -10 \rightarrow 13$
20660 measured reflections	$l = -48 \rightarrow 48$

Refinement

Refinement on F^2

Hydrogen site location: inferred from neighbouring sites

Least-squa	res matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma($	$(F^2)] = 0.064$	$w = 1/[\sigma^2(F_0^2) + (0.102P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0$	0.186	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.01		$\Delta \rho_{max} = 0.38 \text{ e} \text{ Å}^{-3}$
2699 reflec	ctions	$\Delta \rho_{\rm min} = -0.31 \ e \ {\rm \AA}^{-3}$
220 param	eters	Extinction correction: none
81 restrain	ts	
Primary at methods	om site location: structure-invariant direct	
Secondary	atom site location: difference Fourier man	D

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
C1	0.5271 (3)	0.0576 (3)	0.66152 (8)	0.0504 (9)	
C2	0.4370 (3)	0.1229 (3)	0.65483 (9)	0.0515 (9)	
H2	0.4037	0.1634	0.6720	0.062*	
C3	0.3946 (3)	0.1304 (3)	0.62371 (9)	0.0502 (9)	
C4	0.4459 (3)	0.0701 (3)	0.59912 (8)	0.0503 (9)	
C5	0.5358 (3)	0.0018 (3)	0.60522 (8)	0.0534 (9)	
C6	0.5743 (3)	-0.0025 (3)	0.63688 (8)	0.0555 (10)	
H6	0.6353	-0.0483	0.6418	0.067*	
C7	0.2966 (3)	0.2026 (3)	0.61710 (10)	0.0623 (10)	
H7A	0.2892	0.2559	0.6352	0.075*	
H7B	0.3103	0.2448	0.5969	0.075*	
C8	0.1899 (4)	0.1414 (5)	0.61348 (17)	0.118 (2)	
H8A	0.2000	0.0796	0.5985	0.178*	
H8B	0.1337	0.1910	0.6048	0.178*	
H8C	0.1664	0.1138	0.6348	0.178*	
C9	0.5914 (3)	-0.0633 (3)	0.57863 (9)	0.0679 (11)	
H9A	0.6275	-0.1282	0.5885	0.082*	0.50
H9B	0.5349	-0.0902	0.5632	0.082*	0.50
Н9С	0.5855	-0.0251	0.5580	0.082*	0.50
H9D	0.6687	-0.0729	0.5837	0.082*	0.50

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C10	0.6760 (6)	0.0018 (6)	0.55996 (17)	0.0545 (19)	0.50
H10A	0.7139	-0.0466	0.5445	0.082*	0.50
H10B	0.7295	0.0330	0.5752	0.082*	0.50
H10C	0.6396	0.0612	0.5480	0.082*	0.50
C10A	0.5352 (10)	-0.1738 (10)	0.5755 (3)	0.125 (4)	0.50
H10D	0.4582	-0.1629	0.5693	0.188*	0.50
H10E	0.5386	-0.2124	0.5965	0.188*	0.50
H10F	0.5723	-0.2176	0.5588	0.188*	0.50
C11	0.4461 (3)	0.1622 (3)	0.54605 (9)	0.0606 (10)	
C12	0.4170 (4)	0.1490 (4)	0.51115 (9)	0.0894 (15)	
H12A	0.4840	0.1366	0.4984	0.134*	
H12B	0.3803	0.2156	0.5034	0.134*	
H12C	0.3676	0.0860	0.5086	0.134*	
C13	0.5000	0.2500	0.55988 (14)	0.0584 (14)	
N1	0.4111 (3)	0.0809 (3)	0.56575 (8)	0.0583 (9)	
O4	0.3487 (4)	0.2510 (8)	0.78203 (14)	0.262 (4)	
Na1	0.5000	0.2500	0.74867 (6)	0.0922 (8)	
S1	0.58590 (9)	0.05700 (8)	0.70120 (2)	0.0612 (4)	
01	0.4967 (4)	0.0733 (5)	0.72347 (10)	0.0889 (18)	0.869 (11)
O2	0.6390 (5)	-0.0470 (4)	0.70533 (9)	0.0819 (16)	0.869 (11)
O3	0.6590 (6)	0.1505 (5)	0.70159 (15)	0.119 (2)	0.869 (11)
O2A	0.6973 (18)	0.023 (4)	0.6994 (7)	0.099 (14)	0.131 (11)
O1A	0.506 (2)	0.001 (4)	0.7204 (9)	0.117 (15)	0.131 (11)
O3A	0.590 (3)	0.1683 (14)	0.7130 (8)	0.095 (9)	0.131 (11)
H1	0.377 (3)	0.022 (3)	0.5607 (9)	0.067 (13)*	
H13	0.5000	0.2500	0.5828 (12)	0.048 (13)*	

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.045 (2)	0.045 (2)	0.061 (2)	-0.0081 (16)	-0.0005 (17)	0.0017 (17)
C2	0.050(2)	0.047 (2)	0.057 (2)	-0.0037 (17)	0.0048 (18)	-0.0015 (17)
C3	0.045 (2)	0.041 (2)	0.065 (2)	-0.0067 (15)	-0.0019 (18)	0.0014 (17)
C4	0.052 (2)	0.044 (2)	0.055 (2)	-0.0092 (17)	-0.0070 (18)	-0.0011 (17)
C5	0.052 (2)	0.048 (2)	0.060 (2)	0.0011 (18)	-0.0046 (18)	-0.0016 (18)
C6	0.051 (2)	0.056 (2)	0.060 (2)	0.0065 (18)	-0.0029 (18)	-0.0007 (18)
C7	0.057 (2)	0.058 (2)	0.073 (2)	0.0061 (19)	-0.006 (2)	-0.002 (2)
C8	0.061 (3)	0.095 (4)	0.200 (6)	0.003 (3)	-0.011 (4)	0.006 (4)
C9	0.075 (3)	0.069 (3)	0.060 (2)	0.011 (2)	-0.010 (2)	-0.017 (2)
C10	0.042 (4)	0.072 (5)	0.049 (4)	0.016 (4)	0.002 (3)	-0.012 (4)
C10A	0.124 (10)	0.146 (11)	0.106 (8)	0.018 (8)	-0.003 (7)	-0.039 (8)
C11	0.067 (3)	0.058 (3)	0.057 (2)	0.002 (2)	-0.007 (2)	-0.003 (2)
C12	0.125 (4)	0.085 (3)	0.058 (3)	-0.008 (3)	-0.023 (3)	-0.003 (2)
C13	0.074 (4)	0.053 (4)	0.048 (3)	-0.003 (3)	0.000	0.000
N1	0.066 (2)	0.048 (2)	0.061 (2)	-0.0042 (17)	-0.0150 (16)	-0.0086 (17)
O4	0.124 (4)	0.491 (12)	0.171 (5)	-0.108 (6)	0.038 (3)	0.070 (6)
Na1	0.1482 (18)	0.099 (2)	0.0908 (17)	-0.0076 (14)	0.000	0.000
S1	0.0625 (7)	0.0653 (8)	0.0559 (6)	-0.0015 (5)	-0.0058 (5)	-0.0010 (5)

01	0.087 (3)	0.120 (4)	0.059 (2)	0.034 (3)	0.005 (2)	-0.008 (3)
O2	0.087 (4)	0.096 (3)	0.063 (2)	0.038 (3)	-0.009 (2)	0.001 (2)
O3	0.125 (5)	0.136 (4)	0.096 (4)	-0.079 (4)	-0.045 (3)	0.026 (3)
O2A	0.040 (16)	0.18 (4)	0.078 (16)	0.064 (18)	-0.010 (13)	-0.05 (2)
O1A	0.045 (17)	0.17 (3)	0.14 (3)	-0.05 (2)	-0.006 (15)	0.09 (3)
O3A	0.14 (2)	0.065 (15)	0.081 (17)	-0.075 (15)	-0.050 (16)	0.017 (12)
Geometric param	neters (Å, °)					
C1—C6		1.374 (5)	C1	0A—H10E	0.980	0
C1—C2		1.382 (5)	C1	0A—H10F	0.980	0
C1—S1		1.779 (4)	C1	1—N1	1.347	(5)
С2—С3		1.381 (5)	C1	1—C13	1.377	(4)
С2—Н2		0.9500	C1	1—C12	1.484	(5)
C3—C4		1.396 (5)	C1	2—H12A	0.980	0
С3—С7		1.507 (5)	C1	2—H12B	0.980	0
C4—C5		1.397 (5)	C1	2—Н12С	0.980	0
C4—N1		1.440 (4)	C1	3—C11 ⁱ	1.377	(4)
C5—C6		1.383 (5)	C1	3—Н13	0.94 ((4)
С5—С9		1.509 (5)	Nl	—H1	0.85 ((4)
С6—Н6		0.9500	04	—Na1	2.295	(5)
С7—С8		1.505 (6)	Na	1—03A ⁱ	2.08 ((4)
C7—H7A		0.9900	Na	1—03A	2.08 ((4)
С7—Н7В		0.9900	Na	1—04 ⁱ	2.295	(5)
C8—H8A		0.9800	Na	1—01	2.387	(6)
C8—H8B		0.9800	Na	1—01 ⁱ	2.387	(6)
C8—H8C		0.9800	Na	1—03 ⁱ	2.992	(9)
C9—C10		1.509 (8)	Na	1—03	2.992	(9)
C9—C10A		1.516 (13)	Na	1—S1	3.227	4 (19)
С9—Н9А		0.9900	Na	1—S1 ⁱ	3.227	4 (19)
С9—Н9В		0.9900	S1	—O2A	1.422	(13)
С9—Н9С		0.9700	S1	—O1A	1.430	(14)
C9—H9D		0.9700	S1	—O2	1.431	(4)
C10—H10A		0.9800	S1-	01	1.433	(4)
C10—H10B		0.9800	S1	—O3A	1.439	(15)
C10—H10C		0.9800	S1	—03	1.445	(4)
C10A—H10D		0.9800				
C6—C1—C2		119.5 (3)	C1	1 ⁱ —C13—H13	114.4	(3)
C6-C1-S1		120.2 (3)	C1	1—N1—C4	123.1	(3)
C2-C1-S1		120.2 (3)	C1	1—N1—H1	129 (.	3)
C3—C2—C1		121.2 (3)	C4	—N1—H1	107 (3	3)
С3—С2—Н2		119.4	03	A ⁱ —Na1—O3A	90.6 (16)
C1—C2—H2		119.4	03	A ⁱ —Na1—O4	89.7 (9)
C2—C3—C4		117.8 (3)	03	A—Na1—O4	147.7	(9)
C2—C3—C7		120.1 (3)	03	A ⁱ —Na1—O4 ⁱ	147.7	(9)
C4—C3—C7		122.1 (3)	03	A—Na1—O4 ⁱ	89.7 (9)

C3—C4—C5	122.3 (3)	O4—Na1—O4 ⁱ	106.7 (3)
C3—C4—N1	120.5 (3)	O3A ⁱ —Na1—O1	96.7 (8)
C5—C4—N1	117.1 (3)	O3A—Na1—O1	43.4 (8)
C6—C5—C4	117.1 (3)	O4—Na1—O1	104.5 (3)
C6—C5—C9	120.5 (3)	O4 ⁱ —Na1—O1	105.5 (3)
C4—C5—C9	122.3 (3)	O3A ⁱ —Na1—O1 ⁱ	43.4 (8)
C1—C6—C5	122.0 (3)	O3A—Na1—O1 ⁱ	96.7 (8)
С1—С6—Н6	119.0	O4—Na1—O1 ⁱ	105.5 (3)
С5—С6—Н6	119.0	O4 ⁱ —Na1—O1 ⁱ	104.5 (3)
C8—C7—C3	114.4 (3)	O1—Na1—O1 ⁱ	128.6 (3)
С8—С7—Н7А	108.7	O3A ⁱ —Na1—O3 ⁱ	8.7 (9)
С3—С7—Н7А	108.7	O3A—Na1—O3 ⁱ	94.6 (8)
С8—С7—Н7В	108.7	O4—Na1—O3 ⁱ	82.2 (2)
С3—С7—Н7В	108.7	O4 ⁱ —Na1—O3 ⁱ	155.1 (3)
Н7А—С7—Н7В	107.6	O1—Na1—O3 ⁱ	94.26 (17)
С7—С8—Н8А	109.5	O1 ⁱ —Na1—O3 ⁱ	50.64 (15)
С7—С8—Н8В	109.5	O3A ⁱ —Na1—O3	94.6 (8)
H8A—C8—H8B	109.5	O3A—Na1—O3	8.7 (9)
С7—С8—Н8С	109.5	O4—Na1—O3	155.1 (3)
H8A—C8—H8C	109.5	O4 ⁱ —Na1—O3	82.2 (2)
H8B—C8—H8C	109.5	O1—Na1—O3	50.64 (15)
C10—C9—C5	113.4 (4)	O1 ⁱ —Na1—O3	94.26 (17)
C10—C9—C10A	137.1 (6)	O3 ⁱ —Na1—O3	99.5 (2)
C5—C9—C10A	108.9 (5)	O3A ⁱ —Na1—S1	95.4 (8)
С10—С9—Н9А	108.9	O3A—Na1—S1	19.4 (8)
С5—С9—Н9А	108.9	O4—Na1—S1	128.6 (2)
С10А—С9—Н9А	61.7	O4 ⁱ —Na1—S1	95.5 (2)
С10—С9—Н9В	108.9	O1—Na1—S1	24.15 (13)
С5—С9—Н9В	108.9	O1 ⁱ —Na1—S1	112.89 (15)
С10А—С9—Н9В	48.6	O3 ⁱ —Na1—S1	96.57 (13)
Н9А—С9—Н9В	107.7	O3—Na1—S1	26.52 (8)
С10—С9—Н9С	49.8	O3A ⁱ —Na1—S1 ⁱ	19.4 (8)
С5—С9—Н9С	110.3	O3A—Na1—S1 ⁱ	95.4 (8)
С10А—С9—Н9С	108.6	O4—Na1—S1 ⁱ	95.5 (2)
Н9А—С9—Н9С	140.5	O4 ⁱ —Na1—S1 ⁱ	128.6 (2)
Н9В—С9—Н9С	63.2	O1—Na1—S1 ⁱ	112.89 (15)
C10—C9—H9D	60.7	O1 ⁱ —Na1—S1 ⁱ	24.15 (13)
С5—С9—Н9D	110.1	O3 ⁱ —Na1—S1 ⁱ	26.52 (8)
C10A—C9—H9D	110.4	O3—Na1—S1 ⁱ	96.57 (13)
H9A—C9—H9D	52.2	S1—Na1—S1 ⁱ	105.70 (8)
H9B—C9—H9D	140.4	O2A—S1—O1A	123 (2)
H9C—C9—H9D	108.5	O2A—S1—O2	47 (2)
С9—С10—Н9С	40.0	O1A—S1—O2	80 (2)

С9—С10—Н9D	39.3	O2A—S1—O1	142.8 (14)
H9C—C10—H9D	78.1	O1A—S1—O1	36 (2)
C9—C10—H10A	109.5	O2—S1—O1	112.9 (3)
H9C-C10-H10A	103.5	O2A—S1—O3A	105.1 (19)
H9D-C10-H10A	95.4	O1A—S1—O3A	107 (2)
С9—С10—Н10В	109.5	O2—S1—O3A	141.0 (13)
H9C-C10-H10B	142.3	O1—S1—O3A	71.5 (17)
H9D—C10—H10B	81.0	O2A—S1—O3	69 (2)
C9—C10—H10C	109.5	O1A—S1—O3	142 (2)
H9C-C10-H10C	75.1	O2—S1—O3	114.7 (3)
H9D—C10—H10C	146.8	O1—S1—O3	110.5 (4)
C9—C10A—H10D	109.5	O3A—S1—O3	39.9 (15)
C9—C10A—H10E	109.5	O2A—S1—C1	109.8 (11)
H10D—C10A—H10E	109.5	O1A—S1—C1	103.4 (15)
C9—C10A—H10F	109.5	O2—S1—C1	107.1 (2)
H10D—C10A—H10F	109.5	01—S1—C1	106.2 (2)
H10E—C10A—H10F	109.5	O3A—S1—C1	108.5 (12)
N1—C11—C13	118.2 (4)	O3—S1—C1	104.8 (2)
N1—C11—C12	115.1 (4)	O2A—S1—Na1	123.7 (14)
C13—C11—C12	126.6 (4)	O1A—S1—Na1	78 (3)
C11—C12—H12A	109.5	O2—S1—Na1	135.95 (16)
C11—C12—H12B	109.5	O1—S1—Na1	43.0 (3)
H12A—C12—H12B	109.5	O3A—S1—Na1	28.8 (17)
C11—C12—H12C	109.5	O3—S1—Na1	67.6 (4)
H12A—C12—H12C	109.5	C1—S1—Na1	114.80 (13)
H12B-C12-H12C	109.5	S1—O1—Na1	112.9 (4)
C11—C13—C11 ¹	131.3 (5)	S1—O3—Na1	85.9 (4)
C11—C13—H13	114.4 (3)	S1—O3A—Na1	132 (2)
C6—C1—C2—C3	-1.1 (5)	O4 ⁱ —Na1—S1—O1	116.1 (4)
S1—C1—C2—C3	175.5 (3)	O1 ⁱ —Na1—S1—O1	-135.6 (3)
C1—C2—C3—C4	-0.2 (5)	O3 ⁱ —Na1—S1—O1	-85.7 (3)
C1—C2—C3—C7	-179.8 (3)	O3—Na1—S1—O1	176.1 (4)
C2—C3—C4—C5	1.4 (5)	S1 ⁱ —Na1—S1—O1	-111.1 (3)
C7—C3—C4—C5	-179.0 (3)	O3A ⁱ —Na1—S1—O3A	76 (3)
C2—C3—C4—N1	-175.1 (3)	O4—Na1—S1—O3A	170 (3)
C7—C3—C4—N1	4.4 (5)	O4 ⁱ —Na1—S1—O3A	-73 (3)
C3—C4—C5—C6	-1.2 (5)	O1—Na1—S1—O3A	171 (3)
N1-C4-C5-C6	175.4 (3)	O1 ⁱ —Na1—S1—O3A	35 (3)
C3—C4—C5—C9	-179.9 (3)	O3 ⁱ —Na1—S1—O3A	85 (3)
N1—C4—C5—C9	-3.2 (5)	O3—Na1—S1—O3A	-13 (3)
C2-C1-C6-C5	1.2 (5)	S1 ⁱ —Na1—S1—O3A	60 (3)
S1—C1—C6—C5	-175.4 (3)	O3A ⁱ —Na1—S1—O3	89.5 (9)
C4C5C6C1	-0.1 (5)	O3A—Na1—S1—O3	13 (3)
C9—C5—C6—C1	178.6 (4)	O4—Na1—S1—O3	-176.6 (3)
C2—C3—C7—C8	-102.8 (5)	O4 ⁱ —Na1—S1—O3	-60.0 (3)
C4—C3—C7—C8	77.7 (5)	O1—Na1—S1—O3	-176.1 (4)

C6—C5—C9—C10	-94.6 (5)	O1 ⁱ —Na1—S1—O3	48.3 (3)
C4—C5—C9—C10	84.0 (5)	O3 ⁱ —Na1—S1—O3	98.1 (3)
C6C5C9C10A	92.4 (6)	S1 ⁱ —Na1—S1—O3	72.7 (2)
C4C5C9C10A	-89.0 (6)	O3A ⁱ —Na1—S1—C1	-7.0 (9)
N1—C11—C13—C11 ⁱ	172.5 (4)	O3A—Na1—S1—C1	-83 (3)
C12-C11-C13-C11 ⁱ	-10.5 (3)	O4—Na1—S1—C1	86.9 (3)
C13—C11—N1—C4	-12.9 (5)	O4 ⁱ —Na1—S1—C1	-156.5 (2)
C12—C11—N1—C4	169.8 (4)	O1—Na1—S1—C1	87.4 (3)
C3—C4—N1—C11	83.0 (5)	O1 ⁱ —Na1—S1—C1	-48.26 (18)
C5—C4—N1—C11	-93.7 (4)	O3 ⁱ —Na1—S1—C1	1.62 (15)
C6-C1-S1-O2A	20 (3)	O3—Na1—S1—C1	-96.5 (3)
C2-C1-S1-O2A	-157 (3)	S1 ⁱ —Na1—S1—C1	-23.80 (12)
C6-C1-S1-O1A	-113 (2)	O2A—S1—O1—Na1	86 (3)
C2-C1-S1-O1A	71 (2)	O1A—S1—O1—Na1	160 (3)
C6—C1—S1—O2	-29.4 (4)	O2—S1—O1—Na1	133.7 (3)
C2—C1—S1—O2	154.1 (4)	O3A—S1—O1—Na1	-4.7 (13)
C6—C1—S1—O1	-150.2 (4)	O3—S1—O1—Na1	3.8 (4)
C2-C1-S1-O1	33.2 (4)	C1—S1—O1—Na1	-109.2 (2)
C6—C1—S1—O3A	134.3 (19)	O3A ⁱ —Na1—O1—S1	88.2 (10)
C2-C1-S1-O3A	-42.2 (19)	O3A—Na1—O1—S1	4.4 (12)
C6—C1—S1—O3	92.8 (5)	O4—Na1—O1—S1	179.6 (3)
C2—C1—S1—O3	-83.7 (5)	O4 ⁱ —Na1—O1—S1	-68.1 (3)
C6-C1-S1-Na1	164.6 (3)	O1 ⁱ —Na1—O1—S1	55.6 (2)
C2-C1-S1-Na1	-11.9 (3)	O3 ⁱ —Na1—O1—S1	96.6 (3)
O3A ⁱ —Na1—S1—O2A	132 (3)	O3—Na1—O1—S1	-2.2 (2)
O3A—Na1—S1—O2A	56 (3)	S1 ⁱ —Na1—O1—S1	77.1 (3)
O4—Na1—S1—O2A	-134 (3)	O2A—S1—O3—Na1	-143.0 (13)
O4 ⁱ —Na1—S1—O2A	-17 (3)	O1A—S1—O3—Na1	-26 (3)
O1—Na1—S1—O2A	-134 (3)	O2—S1—O3—Na1	-131.8 (2)
O1 ⁱ —Na1—S1—O2A	91 (3)	O1—S1—O3—Na1	-2.8 (3)
O3 ⁱ —Na1—S1—O2A	141 (3)	O3A—S1—O3—Na1	9.8 (19)
O3—Na1—S1—O2A	43 (3)	C1—S1—O3—Na1	111.13 (16)
S1 ⁱ —Na1—S1—O2A	115 (3)	O3A ⁱ —Na1—O3—S1	-92.9 (9)
O3A ⁱ —Na1—S1—O1A	-106.4 (16)	O3A—Na1—O3—S1	-30 (5)
O3A—Na1—S1—O1A	177 (3)	O4—Na1—O3—S1	6.3 (6)
O4—Na1—S1—O1A	-12.5 (14)	O4 ⁱ —Na1—O3—S1	119.5 (3)
O4 ⁱ —Na1—S1—O1A	104.1 (14)	O1—Na1—O3—S1	2.0 (2)
O1—Na1—S1—O1A	-12.0 (15)	O1 ⁱ —Na1—O3—S1	-136.4 (3)
O1 ⁱ —Na1—S1—O1A	-147.6 (14)	O3 ⁱ —Na1—O3—S1	-85.7 (2)
O3 ⁱ —Na1—S1—O1A	-97.7 (13)	S1 ⁱ —Na1—O3—S1	-112.3 (2)
O3—Na1—S1—O1A	164.1 (13)	O2A—S1—O3A—Na1	-135 (2)
S1 ⁱ —Na1—S1—O1A	-123.1 (13)	O1A—S1—O3A—Na1	-3(3)
O3A ⁱ —Na1—S1—O2	-167.6 (11)	O2—S1—O3A—Na1	-97 (3)

O3A—Na1—S1—O2	116 (3)	O1—S1—O3A—Na1	6.6 (19)
O4—Na1—S1—O2	-73.7 (5)	O3—S1—O3A—Na1	-161 (4)
O4 ⁱ —Na1—S1—O2	42.9 (4)	C1—S1—O3A—Na1	108 (2)
O1—Na1—S1—O2	-73.2 (4)	O3A ⁱ —Na1—O3A—S1	-105 (3)
O1 ⁱ —Na1—S1—O2	151.2 (4)	O4—Na1—O3A—S1	-14 (4)
O3 ⁱ —Na1—S1—O2	-159.0 (4)	O4 ⁱ —Na1—O3A—S1	108 (2)
O3—Na1—S1—O2	102.9 (4)	O1—Na1—O3A—S1	-5.5 (16)
S1 ⁱ —Na1—S1—O2	175.6 (4)	O1 ⁱ —Na1—O3A—S1	-148 (2)
O3A ⁱ —Na1—S1—O1	-94.4 (10)	O3 ⁱ —Na1—O3A—S1	-97 (2)
O3A—Na1—S1—O1	-171 (3)	O3—Na1—O3A—S1	138 (7)
O4—Na1—S1—O1	-0.5 (4)	S1 ⁱ —Na1—O3A—S1	-123 (2)

Symmetry codes: (i) -x+1, -y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1···O2 ⁱⁱ	0.85 (4)	2.01 (4)	2.854 (6)	175 (4)
N1—H1···O2A ⁱⁱ	0.85 (4)	2.08 (5)	2.83 (3)	148 (4)

Symmetry codes: (ii) -y+1/4, x-3/4, -z+5/4.

